优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题
初中数学

如图所示, AB O 的直径,点 C D O 上不同的两点,直线 BD 交线段 OC 于点 E 、交过点 C 的直线 CF 于点 F ,若 OC = 3 CE ,且 9 ( E F 2 - C F 2 ) = O C 2

(1)求证:直线 CF O 的切线;

(2)连接 OD AD AC DC ,若 COD = 2 BOC

①求证: ΔACD ΔOBE

②过点 E EG / / AB ,交线段 AC 于点 G ,点 M 为线段 AC 的中点,若 AD = 4 ,求线段 MG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系 xOy 中,一次函数 y = 2 x 的图象 l 与函数 y = k x ( k > 0 , x > 0 ) 的图象(记为 Γ ) 交于点 A ,过点 A AB y 轴于点 B ,且 AB = 1 ,点 C 在线段 OB 上(不含端点),且 OC = t ,过点 C 作直线 l 1 / / x 轴,交 l 于点 D ,交图象 Γ 于点 E

(1)求 k 的值,并且用含 t 的式子表示点 D 的横坐标;

(2)连接 OE BE AE ,记 ΔOBE ΔADE 的面积分别为 S 1 S 2 ,设 U = S 1 - S 2 ,求 U 的最大值.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

《蝶几图》是明朝人戈汕所作的一部组合家具的设计图 ( " "为"蜨",同"蝶" ) ,它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的"樣"和"隻"为"样"和"只" ) .图②为某蝶几设计图,其中 ΔABD ΔCBD 为"大三斜"组件 ( "一樣二隻"的大三斜组件为两个全等的等腰直角三角形),已知某人位于点 P 处,点 P 与点 A 关于直线 DQ 对称,连接 CP DP .若 ADQ = 24 ° ,则 DCP =   度.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于 y 轴对称,则把该函数称之为“ T 函数”,其图象上关于 y 轴对称的不同两点叫做一对“ T 点”.根据该约定,完成下列各题.

(1)若点 A ( 1 , r ) 与点 B ( s , 4 ) 是关于 x 的“ T 函数” y = - 4 x ( x < 0 ) t x 2 x 0 , t 0 , t 是常数 的图象上的一对“ T 点”,则 r =    s =    t =   (将正确答案填在相应的横线上);

(2)关于 x 的函数 y = kx + p ( k p 是常数)是“ T 函数”吗?如果是,指出它有多少对“ T 点”如果不是,请说明理由;

(3)若关于 x 的“ T 函数” y = a x 2 + bx + c ( a > 0 ,且 a b c 是常数)经过坐标原点 O ,且与直线 l : y = mx + n ( m 0 n > 0 ,且 m n 是常数)交于 M ( x 1 y 1 ) N ( x 2 y 2 ) 两点,当 x 1 x 2 满足 ( 1 - x 1 ) - 1 + x 2 = 1 时,直线 l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.

来源:2021年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

在一次数学活动课上,某数学老师将 1 ~ 10 共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是 (    )

A.

戊同学手里拿的两张卡片上的数字是8和9

B.

丙同学手里拿的两张卡片上的数字是9和7

C.

丁同学手里拿的两张卡片上的数字是3和4

D.

甲同学手里拿的两张卡片上的数字是2和9

来源:2021年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读下面的材料:

如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 x 2

(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;

(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.

例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

证明:任取 x 1 < x 2 ,且 x 1 > 0 x 2 > 0

f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 )

x 1 < x 2 x 1 > 0 x 2 > 0

x 1 + x 2 > 0 x 1 - x 2 < 0

( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 f ( x 1 ) < f ( x 2 )

函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

根据以上材料解答下列问题:

(1)函数 f ( x ) = 1 x ( x > 0 ) f (1) = 1 1 = 1 f (2) = 1 2 f (3) =    f (4) =   

(2)猜想 f ( x ) = 1 x ( x > 0 )   函数(填“增”或“减” ) ,并证明你的猜想.

来源:2021年湖南省张家界市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 外取一点 E ,连接 DE AE CE ,过点 D DE 的垂线交 AE 于点 P ,若 DE = DP = 1 PC = 6 .下列结论:① ΔAPD ΔCED ;② AE CE ;③点 C 到直线 DE 的距离为 3 ;④ S 正方形 ABCD = 5 + 2 2 ,其中正确结论的序号为   

来源:2021年湖南省张家界市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,该河旁有一座小山,山高 BC = 80 m ,坡面 AB 的坡度 i = 1 : 0 . 7 (注:坡度 i 是指坡面的铅直高度与水平宽度的比),点 C A 与河岸 E F 在同一水平线上,从山顶 B 处测得河岸 E 和对岸 F 的俯角分别为 DBE = 45 ° DBF = 31 °

(1)求山脚 A 到河岸 E 的距离;

(2)若在此处建桥,试求河宽 EF 的长度.(结果精确到 0 . 1 m )

(参考数据: sin 31 ° 0 . 52 cos 31 ° 0 . 86 tan 31 ° 0 . 60 )

来源:2021年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB 的垂直平分线分别交 AB AC 于点 D E BE = 8 O ΔBCE 的外接圆,过点 E O 的切线 EF AB 于点 F ,则下列结论正确的是    . (写出所有正确结论的序号)

AE = BC

AED = CBD

③若 DBE = 40 ° ,则 DE ^ 的长为 8 π 9

DF EF = EF BF

⑤若 EF = 6 ,则 CE = 2 . 24

来源:2021年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为"互异二次函数".如图,在正方形 OABC 中,点 A ( 0 , 2 ) ,点 C ( 2 , 0 ) ,则互异二次函数 y = ( x - m ) 2 - m 与正方形 OABC 有交点时 m 的最大值和最小值分别是 (    )

A.

4, - 1

B.

5 - 17 2 - 1

C.

4,0

D.

5 + 17 2 - 1

来源:2021年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b c 为常数).

(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;

(2)若 b 2 - c = 0 ,当 b - 3 x b 时,二次函数的最小值为21,求 b 的值;

(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 x 1 时,总有 y 2 y 1 ,求实数 m 的最小值.

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径,点 E O 上一动点,且不与 A B 两点重合, EAB 的平分线交 O 于点 C ,过点 C CD AE ,交 AE 的延长线于点 D

(1)求证: CD O 的切线;

(2)求证: A C 2 = 2 AD AO

(3)如图2,原有条件不变,连接 BE BC ,延长 AB 至点 M EBM 的平分线交 AC 的延长线于点 P CAB 的平分线交 CBM 的平分线于点 Q .求证:无论点 E 如何运动,总有 P = Q

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

x y 均为实数, 43 x = 2021 47 y = 2021 ,则:

(1) 43 xy 47 xy = (     ) x + y

(2) 1 x + 1 y =   

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:若 10 x = N ,则 x = log 10 N x 称为以10为底的 N 的对数,简记为 lgN ,其满足运算法则: lgM + lgN = lg ( M N ) ( M > 0 N > 0 ) .例如:因为 10 2 = 100 ,所以 2 = lg 100 ,亦即 lg 100 = 2 lg 4 + lg 3 = lg 12 .根据上述定义和运算法则,计算 ( lg 2 ) 2 + lg 2 lg 5 + lg 5 的结果为 (    )

A.

5

B.

2

C.

1

D.

0

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学试题