广东省珠海市高三上学期期末考试理科数学试卷
如图是一个几何体的三视图,根据图中数据可得该几何体的体积是( ).
A.![]() |
B.![]() |
C.![]() |
D.![]() |
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷
已知集合
对于
,
,定义
与
的差为
,定义
与
之间的距离为
.对于
,则下列结论中一定成立的是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷
(本小题满分12分)
某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入的部分数据如下表:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1 |
![]() |
1 |
![]() |
1 |
(1)求函数
的解析式;
(2)若
,
,求
的值.
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷
(本小题满分12分)某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(月) |
![]() |
![]() |
![]() |
![]() |
![]() |
(千克) |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图. 
(2)请根据上表提供的数据,用最小二乘法求出变量
关于变量
的线性回归直线方程
.
(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).
(参考公式:
,
)
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷
(本小题满分14分)已知平行四边形
,
,
,
,
为
的中点,把三角形
沿
折起至
位置,使得
,
是线段
的中点.
(1)求证:
;
(2)求证:面
面
;
(3)求二面角
的正切值.
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷
(本小题满分14分)已知数列
的前
项和为
,且
,其中
(1)求数列
的通项公式;
(2)若
,数列
的前
项和为
,求证:
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷
(本小题满分14分)已知抛物线
,圆
.
(1)在抛物线
上取点
,
的圆周上取一点
,求
的最小值;
(2)设
为抛物线
上的动点,过
作圆
的两条切线,交抛物线
于
、
点,求
中点
的横坐标的取值范围.
来源:2015届广东省珠海市高三上学期期末考试理科数学试卷





,
,则
=( ).



与
互为共轭复数,则复数
=( ).







满足不等式组
,则
的最小值是( ).



,则输入
的值可以为( ).




的展开式中,常数项的值是( ).










的解集为 .
的前
项和记为
,且
,
,则
.
的导函数为
,且满足
,则函数
)处的切线方程为 .
满足
,则
的最大值为 .
与曲线
交点的极坐标是 .
内接于圆
,
与圆
,
,
为
的中点,
,
,
,则
. 















(月)




(千克)




.
的单调区间;
时,
.
粤公网安备 44130202000953号