安徽省合肥市蜀山区中考一模数学试卷
由若干个相同的小立方体搭成的几何体的三视图如图所示,则组成该几何体的小立方体有( )
A.3块 | B.4块 | C.5块 | D.6块 |
合肥高铁南站已于2014年11月12日正式开通,它拥有22个站台、26条股道、站房建筑总面积达9.92万平方米,是上海铁路局下辖的特等车站.把9.92万用科学记数法表示为( )
A.99200 | B.992×102 | C.9.92×106 | D.9.92×104 |
如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于( )
A.159° | B.148° | C.142° | D.138° |
下列计算中,正确的是( )
A.2a2+3a2=5a4 | B.(a﹣b)2=a2﹣b2 | C.(a3)3=a6 | D.(﹣2a2)3=﹣8a6 |
方程2x(x+3)=0的根的情况是( )
A.有两个不相等的实数根 | B.有两个相等的实数根 |
C.只有一个实数根 | D.没有实数根 |
数据3,5,1,7的平均数和方差分别是( )
A.5,2 | B.3,5 | C.4,20 | D.4,5 |
如图,正方形OABC的一个顶点O是平面直角坐标系的原点,顶点A,C分别在y轴和x轴上,P为边OC上的一个动点,且PQ⊥BP,PQ=BP,当点P从点C运动到点O时,可知点Q始终在某函数图象上运动,则其函数图象是( )
A.线段 | B.圆弧 |
C.双曲线的一部分 | D.抛物线的一部分 |
如图,正方形ABCD的对角线BD长为2,若直线满足:(1)点D到直线的距离为1;(2)A、C两点到直线的距离相等,则符合题意的直线的条数为( )
A.2 B.3 C.4 D.6
如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、B、C、D、E、F,若AB=6,DE=3,EF=4,则BC= .
有两个不透明的袋子,一个袋子中装有两个球(黑球、白球各一个),另一个袋子中装有3个球(白球,黑球,红球各一个),这些球除颜色外没有其它不同之处.现从两个袋子中分别随机摸出1个球,则摸出的两个球颜色相同的概率是 .
一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=﹣3的解为 .
二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:
①b2﹣4ac>0;
②4a+c>2b;
③(a+c)2>b2;
④x(ax+b)≤a﹣b.
其中正确结论的是①②④.(请把正确结论的序号都填在横线上)
现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣、…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现.问:
(1)第50个数是什么数?
(2)把从第1个数开始的前2015个数相加,结果是多少?
(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?
如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;
(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;
(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;
(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
某中学为了了解本校八年级女生“一分钟跳绳”项目基础情况,从八年级随机抽取部分女生进行该项目测试,并将测试所得的数据,绘制成如图所示的部分频数分布直方图(从左到右依次分为第一小组,第二小组…第六小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:
(1)补全频数分布直方图.
(2)计算在扇形统计图中第一小组对应的扇形的圆心角度数.
(3)这次测试成绩的中位数落在第 小组.
(4)若测试八年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校八年级女生共有400人,请估算该校八年级女生“一分钟跳绳”成绩为优秀的人数.
近年来,有私家车的业主越来越多,某小区为解决“停车难”问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中水平线AB=10m,BD⊥AB,∠BAD=20°,点C在BD上,BC=1m.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.李建认为CD的长度就是限制的高度,而孙杰认为应该以CE的长度作为限制的高度.李建和孙杰谁说的对?请你判断并计算出限制高度.(结果精确到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
已知,如图,直线MN交⊙O于A,B两点,AC是⊙O的直径,DE切⊙O于点D,且DE⊥MN于点E.
(1)求证:AD平分∠CAM.
(2)若DE=6,AE=3,求⊙O的半径.
如图,直线l过点A(a,0)和点B(0,b)(其中a>0,b>0).反比例函数y=(k>0)的图象与直线l交于C、D两点,连接OC、OD.
(1)若a+b=10,△AOB的面积为S,问:当b为何值时,S取最大值?并求出这个最大值;
(2)当S取最大值时,若C,D恰好是线段AB的三等分点,求k的值.