[辽宁]2013年辽宁省营口市中考模拟(一)数学试卷
如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是
A.2 | B.3 | C.4 | D.5 |
日本东部大地震造成日本国内经济损失约2350亿美元,其中2350亿保留两个有效数字用科学记数法表示为( )美元
A.2.3×1011 | B.2.35×1011 | C.2.4×1011 | D.0.24×1012 |
在平面直角坐标系xOy中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于
A. | B. | C. | D. |
在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是
A.2.5 B.5 C.10 D.15
在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m)为:6、8、9、8、9。则关于这组数据的说法不正确的是
A.极差是3 | B.平均数是8 | C.众数是8和9 | D.中位数是9 |
如图,在直径AB=12的⊙O中,弦CD⊥AB于M,且M是半径OB的中点,则弦CD的长是
A.3 | B.3 | C.6 | D.6 |
如图,三个大小相同的正方形拼成六边形ABCDEF,一动点P从点A出发沿着A→B→C→D→E方向匀速运动,最后到达点E.运动过程中△PEF的面积(S)随时间(t)变化的图象大致是
农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).
用一个半径为30cm,圆心角为60°的扇形纸片围成一个圆锥形纸帽,则纸帽的底面圆半径为__________cm.
已知⊙O1与⊙O2 相切,圆心距是5,⊙O1的半径是3,则⊙O2的半径是____________.
如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)请你通过计算说明△ABC的形状为___ _.;
(2)画线段AD∥BC且使AD =BC,连接CD.请你判断四边形ABCD的形状,并求出它的面积;
(3)若E为AC中点,则sin∠ABE=_______,cos∠CAD=____.
不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为.
(1)求袋中黄球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.
2013年1月1日,我国新交规法开始实施,如图,一辆汽车在一个十字路口遇到黄灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案.
某学校有1500名学生参加首届“我爱我们的课堂”为主题的图片制作比赛,赛后随机抽取部分参赛学生的成绩进行整理并制作成图表如下:
频率分布统计表 |
频率分布直方图 |
||
分数段 |
频数 |
频率 |
|
60≤x<70 |
40 |
0.40 |
|
70≤x<80 |
35 |
b |
|
80≤x<90 |
a |
0.15 |
|
90≤x<100 |
10 |
0.10 |
|
|
|
|
|
请根据上述信息,解答下列问题:
(1)表中:a= ,b= ;
(2)请补全频数分布直方图;
(3)如果将比赛成绩80分以上(含80分)定为优秀,那么优秀率是多少?并且估算该校参赛学生获得优秀的人数。
如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.
(1)求证:AB是⊙O的切线;
(2)若D为OA的中点,阴影部分的面积为,求⊙O的半径r.
某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果每千克的利润为3元,那么每天可售出250千克.
小红:如果以13元/千克的价格销售,那么每天可获取利润750元.
【利润=(销售价-进价)销售量】
(1)请根据他们的对话填写下表:
销售单价x(元/kg) |
10 |
11 |
13 |
销售量y(kg) |
|
|
|
(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;
(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=,CQ=时,P、Q两点间的距离 (用含的代数式表示).