如图1,在矩形 中, , ,点 , 分别为 , 的中点.
(1)求证:四边形 是矩形;
(2)如图2,点 是边 上一点, 交 于点 ,点 关于 的对称点为点 ,当点 落在线段 上时,则有 .请说明理由;
(3)如图3,若点 是射线 上一个动点,点 关于 的对称点为点 ,连接 , ,当 是等腰三角形时,求 的长.

如图1,在平面直角坐标系中, 是坐标原点,抛物线 经过点 和点 .
(1)求抛物线的表达式;
(2)如图2,线段 绕原点 逆时针旋转 得到线段 .过点 作射线 ,点 是射线 上一点(不与点 重合),点 关于 轴的对称点为点 ,连接 , .
①直接写出 的形状为 ;
②设 的面积为 , 的面积为是 .当 时,求点 的坐标;
(3)如图3,在(2)的结论下,过点 作 ,交 的延长线于点 ,线段 绕点 逆时针旋转,旋转角为 得到线段 ,过点 作 轴,交射线 于点 , 的角平分线和 的角平分线相交于点 ,当 时,请直接写出点 的坐标为 .

如图,二次函数 的图象与 轴交于点 ,过点 作 轴的平行线交抛物线于另一点 ,抛物线过点 ,且顶点为 ,连接 、 、 、 .
(1)填空: ;
(2)点 是抛物线上一点,点 的横坐标大于1,直线 交直线 于点 .若 ,求点 的坐标;
(3)点 在直线 上,点 关于直线 对称的点为 ,点 关于直线 对称的点为 ,连接 .当点 在 轴上时,直接写出 的长.

如图1,抛物线 与抛物线 相交 轴于点 ,抛物线 与 轴交于 、 两点(点 在点 的右侧),直线 交 轴负半轴于点 ,交 轴于点 ,且 .
(1)求抛物线 的解析式与 的值;
(2)抛物线 的对称轴交 轴于点 ,连接 ,在 轴上方的对称轴上找一点 ,使以点 , , 为顶点的三角形与 相似,求出 的长;
(3)如图2,过抛物线 上的动点 作 轴于点 ,交直线 于点 ,若点 是点 关于直线 的对称点,是否存在点 (不与点 重合),使点 落在 轴上?若存在,请直接写出点 的横坐标,若不存在,请说明理由.

如图,抛物线 经过点 ,与 轴相交于 , 两点.
(1)求抛物线的函数表达式;
(2)点 在抛物线的对称轴上,且位于 轴的上方,将 沿直线 翻折得到△ ,若点 恰好落在抛物线的对称轴上,求点 和点 的坐标;
(3)设 是抛物线上位于对称轴右侧的一点,点 在抛物线的对称轴上,当 为等边三角形时,求直线 的函数表达式.

如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点(点 在点 的左侧),与 轴交于点 ,对称轴与 轴交于点 ,点 在抛物线上.

(1)求直线 的解析式;
(2)点 为直线 下方抛物线上的一点,连接 , .当 的面积最大时,连接 , ,点 是线段 的中点,点 是 上的一点,点 是 上的一点,求 的最小值;
(3)点 是线段 的中点,将抛物线 沿 轴正方向平移得到新抛物线 , 经过点 , 的顶点为点 .在新抛物线 的对称轴上,是否存在点 ,使得 为等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
问题提出
(1)如图①,在 中, , ,则 的外接圆半径 的值为 .
问题探究
(2)如图②, 的半径为13,弦 , 是 的中点, 是 上一动点,求 的最大值.
问题解决
(3)如图③所示, 、 、 是某新区的三条规划路,其中 , , , 所对的圆心角为 ,新区管委会想在 路边建物资总站点 ,在 , 路边分别建物资分站点 、 ,也就是,分别在 、线段 和 上选取点 、 、 .由于总站工作人员每天都要将物资在各物资站点间按 的路径进行运输,因此,要在各物资站点之间规划道路 、 和 .为了快捷、环保和节约成本.要使得线段 、 、 之和最短,试求 的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

试题篮
()