在平面直角坐标系中, 的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)
(1)画出 关于 轴对称的△ ;
(2)将 绕点 逆时针旋转 ,画出旋转后得到的△ ,并直接写出此过程中线段 扫过图形的面积(结果保留

已知:△ABC在直角坐标平面内,三个顶点的坐标分别为 、 、 (正方形网格中每个小正方形的边长是1个单位长度).
(1)△A1B1C1是△ABC绕点 逆时针旋转 度得到的,B1的坐标是 ;
(2)求出线段AC旋转过程中所扫过的面积(结果保留π).

如图,△ABC三个顶点的坐标分别为A(﹣1,3),B(﹣4,1),C(﹣2,1).
(1)请画出△ABC向右平移5个单位长度后得到的△A1B1C1.
(2)请画出△A1B1C1关于原点对称的△A2B2C2.
(3)求四边形ABA2B2的面积.

如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ ABC的三个顶点的坐标分别为 A(﹣1,3), B(﹣4,0), C(0,0)
(1)画出将△ ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△ A 1 B 1 C 1;
(2)画出将△ ABC绕原点 O顺时针方向旋转90°得到△ A 2 B 2 O;
(3)在 x轴上存在一点 P,满足点 P到 A 1与点 A 2距离之和最小,请直接写出 P点的坐标.

如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;
(2)画出△ABC绕点A按逆时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标.

如图,在平面直角坐标系中,已知点 , 和 ,请按下列要求画图并填空.
(1)平移线段 ,使点 平移到点 ,画出平移后所得的线段 ,并写出点 的坐标为 ;
(2)将线段 绕点 逆时针旋转 ,画出旋转后所得的线段 ,并直接写出 的值为 ;
(3)在 轴上找出点 ,使 的周长最小,并直接写出点 的坐标为 .

如图,在边长均为1个单位长度的小正方形组成的网格中,点 ,点 ,点 均为格点(每个小正方形的顶点叫做格点).
(1)作点 关于点 的对称点 ;
(2)连接 ,将线段 绕点 顺时针旋转 得点 对应点 ,画出旋转后的线段 ;
(3)连接 ,求出四边形 的面积.

如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中, 的三个顶点 、 、 均在格点上.
(1)将 向左平移5个单位得到△ ,并写出点 的坐标;
(2)画出△ 绕点 顺时针旋转 后得到的△ ,并写出点 的坐标;
(3)在(2)的条件下,求△ 在旋转过程中扫过的面积(结果保留 .

如图,在平面直角坐标系中, 的三个顶点分别是 , , .
(1)把 向左平移4个单位后得到对应的△ ,请画出平移后的△ ;
(2)把 绕原点 旋转 后得到对应的△ ,请画出旋转后的△ ;
(3)观察图形可知,△ 与△ 关于点 , 中心对称.

在平面直角坐标系中,四边形 是矩形,点 ,点 ,点 .以点 为中心,顺时针旋转矩形 ,得到矩形 ,点 , , 的对应点分别为 , , .
(Ⅰ)如图①,当点 落在 边上时,求点 的坐标;
(Ⅱ)如图②,当点 落在线段 上时, 与 交于点 .
①求证 ;
②求点 的坐标.
(Ⅲ)记 为矩形 对角线的交点, 为 的面积,求 的取值范围(直接写出结果即可).

阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离P1P2=
同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.
(1)已知A(﹣2,3)、B(4,﹣5),试求A、B两点间的距离;
(2)已知A、B在平行于y轴的直线上,点A的纵坐标为6,点B的纵坐标为﹣2,试求A、B两点间的距离.
(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),请判定此三角形的形状,并说明理由.
(4)已知一个三角形各顶点坐标为A(﹣1,3)、B(0,1)、C(2,2),请判定此三角形的形状,并说明理由.
已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
试题篮
()