如图,一艘海轮位于灯塔 的东北方向,距离灯塔80海里的 处,它沿正南方向航行一段时间后,到达位于灯塔 的南偏东 方向上的 处.
(1)求海轮从 处到 处的途中与灯塔 之间的最短距离(结果保留根号);
(2)若海轮以每小时30海里的速度从 处到 处,试判断海轮能否在5小时内到达 处,并说明理由.
(参考数据: , ,

某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟)
306070103011570607590157040751058060307045
对以上数据进行整理分析,得到下列表一和表二:
表一
|
时间 (单位:分钟) |
|
|
|
|
|
人数 |
2 |
|
10 |
|
表二
|
平均数 |
中位数 |
众数 |
|
60 |
|
|
根据以上提供的信息,解答下列问题:
(1)填空
① , ;
② , ;
(2)如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.
小明根据学习函数的经验,对函数 的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是 .
(2)下表列出了 与 的几组对应值,请写出 , 的值: , ;
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
(3)如图,在平面直角坐标系 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当 时, .
②写出该函数的一条性质 .
③若方程 有两个不相等的实数根,则 的取值范围是 .

如图,小强想测量楼 的高度,楼在围墙内,小强只能在围墙外测量,他无法测得观测点到楼底的距离,于是小强在 处仰望楼顶,测得仰角为 ,再往楼的方向前进30米至 处,测得楼顶的仰角为 , , 三点在一条直线上),求楼 的高度(结果精确到0.1米,小强的身高忽略不计).

某校组织学生去 外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?
如图,在数学活动课上,小丽为了测量校园内旗杆 的高度,站在教学楼的 处测得旗杆底端 的俯角为 ,测得旗杆顶端 的仰角为 .已知旗杆与教学楼的距离 ,请你帮她求出旗杆的高度(结果保留根号).

已知反比例函数 的图象与一次函数 的图象交于点 .
(1)分别求出这两个函数的解析式;
(2)判断 是否在一次函数 的图象上,并说明原因.
一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离 (千米)与行驶时间 (小时)的对应关系如图所示:
(1)甲乙两地相距多远?
(2)求快车和慢车的速度分别是多少?
(3)求出两车相遇后 与 之间的函数关系式;
(4)何时两车相距300千米.

试题篮
()