如图, 中, ,顶点 , 都在反比例函数 的图象上,直线 轴,垂足为 ,连结 , ,并延长 交 于点 ,当 时,点 恰为 的中点,若 , .
(1)求反比例函数的解析式;
(2)求 的度数.

如图,四边形 的四个顶点分别在反比例函数 与 的图象上,对角线 轴,且 于点 .已知点 的横坐标为4.
(1)当 , 时.
①若点 的纵坐标为2,求直线 的函数表达式.
②若点 是 的中点,试判断四边形 的形状,并说明理由.
(2)四边形 能否成为正方形?若能,求此时 , 之间的数量关系;若不能,试说明理由.

如图1,在平面直角坐标系 中,已知 , ,顶点 在第一象限, , 在 轴的正半轴上 在 的右侧), , , 与 关于 所在的直线对称.
(1)当 时,求点 的坐标;
(2)若点 和点 在同一个反比例函数的图象上,求 的长;
(3)如图2,将(2)中的四边形 向右平移,记平移后的四边形为 ,过点 的反比例函数 的图象与 的延长线交于点 .问:在平移过程中,是否存在这样的 ,使得以点 , , 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的 的值;若不存在,请说明理由.

如图,已知一次函数 的图象与反比例函数 的图象交于点 ,且与 轴交于点 ,第一象限内点 在反比例函数 的图象上,且以点 为圆心的圆与 轴, 轴分别相切于点 ,
(1)求 的值;
(2)求一次函数的表达式;
(3)根据图象,当 时,写出 的取值范围.

如图,在平面直角坐标系中, 点的坐标为 , 轴于点 , ,反比例函数 的图象的一支分别交 、 于点 、 .延长 交反比例函数的图象的另一支于点 .已知点 的纵坐标为 .
(1)求反比例函数的解析式;
(2)求直线 的解析式;
(3)求 .

矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.

如图所示,四边形 是菱形,边 在 轴上,点 ,点 ,双曲线 与直线 交于点 、点 .
(1)求 的值;
(2)求直线 的解析式;
(3)求 的面积.

如图,一次函数 、 为常数, 的图象与 轴、 轴分别交于 、 两点,且与反比例函数 为常数且 的图象在第二象限交于点 , 轴,垂足为 ,若 .
(1)求一次函数与反比例函数的解析式;
(2)求两个函数图象的另一个交点 的坐标;
(3)请观察图象,直接写出不等式 的解集.

如图,直线 与函数 的图象相交于 、 两点,与 轴相交于 点,过 、 两点作 轴的垂线,垂足分别为 、 ,过 、 两点作 轴的垂线,垂足分别为 、 ;直线 与 相交于点 ,连接 .设 、 两点的坐标分别为 、 ,其中 .
(1)如图①,求证: ;
(2)如图②,若 、 、 、 四点在同一圆周上,求 的值;
(3)如图③,已知 ,且点 在直线 上,试问:在线段 上是否存在点 ,使得 ?如存在,请求出点 的坐标;若不存在,请说明理由.

已知一次函数 与反比例函数 的图象交于 、 两点.
(1)求一次函数和反比例函数的表达式;
(2)求 的面积;
(3)点 在 轴上,当 为等腰三角形时,直接写出点 的坐标.

如图,点 和点 是反比例函数 图象上的两点,一次函数 的图象经过点 ,与 轴交于点 ,与 轴交于点 ,过点 作 轴,垂足为 ,连接 , .已知 与 的面积满足 .
(1) , ;
(2)已知点 在线段 上,当 时,求点 的坐标.

如图, 是反比例函数 在第一象限图象上一点,连接 ,过 作 轴,截取 在 右侧),连接 ,交反比例函数 的图象于点 .
(1)求反比例函数 的表达式;
(2)求点 的坐标;
(3)求 的面积.

如图,已知一次函数 的图象与坐标轴交于 , 两点,并与反比例函数 的图象相切于点 .
(1)切点 的坐标是 ;
(2)若点 为线段 的中点,将一次函数 的图象向左平移 个单位后,点 和点 平移后的对应点同时落在另一个反比例函数 的图象上时,求 的值.

已知反比例函数的图象经过三个点 , , ,其中 .
(1)当 时,求 的值;
(2)如图,过点 、 分别作 轴、 轴的垂线,两垂线相交于点 ,点 在 轴上,若三角形 的面积是8,请写出点 坐标(不需要写解答过程).

试题篮
()