如图,锐角三角形 内接于 , 的平分线 交 于点 ,交 边于点 ,连接 .
(1)求证: .
(2)已知 , ,求线段 的长(用含 , 的代数式表示).
(3)已知点 在线段 上(不与点 ,点 重合),点 在线段 上(不与点 ,点 重合), ,求证: .

已知 内接于 , , ,点 是 上一点.
(Ⅰ)如图①,若 为 的直径,连接 ,求 和 的大小;
(Ⅱ)如图②,若 ,连接 ,过点作 的切线,与 的延长线交于点 ,求 的大小.

如图, 是 的内接三角形,过点 作 的切线交 的延长线于点 , 是 的直径,连接 .
(1)求证: ;
(2)若 , 于点 , , ,求 的值.

如图,在 中, , 平分 交 于点 ,点 在 上, , 是 的外接圆,交 于点 .
(1)求证: 是 的切线;
(2)若 的半径为5, ,求 .

如图, 是 的外接圆,点 在 边上, 的平分线交 于点 ,连接 , ,过点 作 的切线与 的延长线交于点 .
(1)求证: ;
(2)求证: ;
(3)当 , 时,求线段 的长.

如图,在 中, , 是 的外接圆, 是直径,交 于点 ,点 在 上,连接 , 过点 作 交 的延长线于点 ,延长 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 和 的长.

课本再现
(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 相等的角是 ;

类比迁移
(2)如图2,在四边形 中, 与 互余,小明发现四边形 中这对互余的角可类比(1)中思路进行拼合:先作 ,再过点 作 于点 ,连接 ,发现 , , 之间的数量关系是 ;
方法运用
(3)如图3,在四边形 中,连接 , ,点 是 两边垂直平分线的交点,连接 , .
①求证: ;
②连接 ,如图4,已知 , , ,求 的长(用含 , 的式子表示).

如图,一次函数 的图象与 轴的正半轴交于点 ,与反比例函数 的图象交于 , 两点.以 为边作正方形 ,点 落在 轴的负半轴上,已知 的面积与 的面积之比为 .
(1)求一次函数 的表达式;
(2)求点 的坐标及 外接圆半径的长.

如图,已知 内接于 , 是 的直径, 的平分线交 于点 ,交 于点 ,连接 ,作 ,交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径和 的长.

如图, 是 的外接圆, 是 的直径, 是 延长线上一点,连接 , ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.

如图, 内接于 , 是 的直径 的延长线上一点, .过圆心 作 的平行线交 的延长线于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径及 的值.

如图, 是 的外接圆, 是 的直径, 于点 .
(1)求证: ;
(2)连接 并延长,交 于点 ,交 于点 ,连接 .若 的半径为5, ,求 和 的长.

如图, 内接于 , 平分 交 边于点 ,交 于点 ,过点 作 于点 ,设 的半径为 , .
(1)过点 作直线 ,求证: 是 的切线;
(2)求证: ;
(3)设 ,求 的值(用含 的代数式表示).

如图, 内接于 , 为 的直径, , ,连结 ,弦 分别交 , 于点 , ,其中点 是 的中点.
(1)求证: .
(2)求 的长.

试题篮
()