(本小题共13分)
已知数列
的前
项和为
,且
.
数列
满足
(
),且
,
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设
,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值;
(Ⅲ)设
是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
推荐试卷
(本小题共13分)
已知数列
的前
项和为
,且
.
数列
满足
(
),且
,
.
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)设
,数列
的前
项和为
,求使不等式
对一切
都成立的最大正整数
的值;
(Ⅲ)设
是否存在
,使得
成立?若存在,求出
的值;若不存在,请说明理由.
试题篮
()