题文
设函数
的定义域为D,若存在非零实数h使得对于任意
,有
,且
,则称
为M上的“h阶高调函数”。给出如下结论:
①若函数
在R上单调递增,则存在非零实数h使
为R上的“
h阶高调函数”;
②若函数
为R上的“h阶高调函数”,则
在R上单调递增;
③若函数
为区间
上的“h阶高诬蔑财函数”,则
④若函数
在R上的奇函数,且
时,
只能是R上的“4阶高调函数”。
其中正确结论的序号为 ( )
A.① ③ |
B.①④ | C.②③ | D.②④ |
推荐试卷





③
粤公网安备 44130202000953号