(本小题满分13分)
给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”
。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
。
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点。求证:
⊥
.
推荐试卷
(本小题满分13分)
给定椭圆
>
>0
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”
。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
。
(1)求椭圆
的方程和其“准圆”方程;
(2)点
是椭圆
的“准圆”上的一个动点,过点
作直线
,使得
与椭圆
都只有一个交点。求证:
⊥
.
试题篮
()