已知
是数列
的前
项和,
(
,
),且
.
(1)求
的值,并写出
和
的关系式;
(2)求数列
的通项公式及
的表达式;
(
3)我们可以证明:若数列
有上界(即存在常数
,使得
对一切
恒成立)且单调递增;或数列
有下界(即存在常数
,使得
对一切
恒成立)且单调递减,则
存在.直接利用上述结论,证明:
存在.
推荐试卷
已知
是数列
的前
项和,
(
,
),且
.
(1)求
的值,并写出
和
的关系式;
(2)求数列
的通项公式及
的表达式;
(
3)我们可以证明:若数列
有上界(即存在常数
,使得
对一切
恒成立)且单调递增;或数列
有下界(即存在常数
,使得
对一切
恒成立)且单调递减,则
存在.直接利用上述结论,证明:
存在.
试题篮
()