题文
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且
(1)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
推荐试卷
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且
(1)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
试题篮
()