请仔细阅读以下材料:
已知
是定义在
上的单调递增函数.
求证:命题“设
,若
,则
”是真命题.
证明 :因为
,由
得
.
又因为
是定义在
上的单调递增函数,
于是有
. ①
同理有
. ②
由①+ ②得
.
故,命题“设
,若
,则
”是真命题.
请针对以上阅读材料中的
,解答以下问题:
(1)试用命题的等价性证明:“设
,若
,则:
”是真命题;
(2)解关于
的不等式
(其中
).
相关知识点
推荐试卷
请仔细阅读以下材料:
已知
是定义在
上的单调递增函数.
求证:命题“设
,若
,则
”是真命题.
证明 :因为
,由
得
.
又因为
是定义在
上的单调递增函数,
于是有
. ①
同理有
. ②
由①+ ②得
.
故,命题“设
,若
,则
”是真命题.
请针对以上阅读材料中的
,解答以下问题:
(1)试用命题的等价性证明:“设
,若
,则:
”是真命题;
(2)解关于
的不等式
(其中
).
试题篮
()