题文
(本小题满分16分)已知椭圆
的离心率为
,并且椭圆经过点
,过原点
的直线
与椭圆
交于
两点,椭圆上一点
满足
.
(1)求椭圆
的方程;
(2)证明:
为定值;
(3)是否存在定圆,使得直线
绕原点
转动时,
恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.
推荐试卷
(本小题满分16分)已知椭圆
的离心率为
,并且椭圆经过点
,过原点
的直线
与椭圆
交于
两点,椭圆上一点
满足
.
(1)求椭圆
的方程;
(2)证明:
为定值;
(3)是否存在定圆,使得直线
绕原点
转动时,
恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.
试题篮
()