(本小题满分8分)如下图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD于点G.
(1)求证:△ABE≌△ABE;
(2)若∠CBF=65°,求∠AGC的度数.
在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机取出一个小球,记下数字为x;小红在剩下的三个小球中随机取出一个小球,记下数字为y.小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明你的理由;若不公平,怎样修改游戏规则才对双方公平?
如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=
,求线段AD的长.
如图在△ABC中,BE平分∠ABC,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E交BC于点F.
(1)求证:AC是⊙O的切线;
(2)已知sinA=
,⊙O的半径为4,求图中阴影部分的面积.
如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE,两线交于点F.
(1)求证:△ABD≌△ACE;
(2)求证:四边形ABFE是菱形.
如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连接DC、DA、OA、OC,四边形OADC为平行四边形。
(1)求证:△BOC≌△CDA
(2)若AB=2,求阴影部分的面积。
列方程或方程组解应用题:
周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.
已知:如图,在矩形ABCD中,E是BC边上一点,DE平分
,EF∥DC交AD边于点F,连结BD.
(1)求证:四边形FECD是正方形;
(2)若
求
的值.
列方程或方程组解应用题:
几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:
根据对话中的信息,请你求出这些小伙伴的人数.
试题篮
()