A、B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米;一列快车从B站出发,每小时行驶80千米,问:
(1)两车同时开出,相向而行,出发后多少小时相遇?
(2)两车相向而行,慢车先开出28分钟,快车开出后多少小时两车相遇?
某校甲、乙、丙同学一同调查了北京的二环路、三环路、四环路高峰段的车流量.
甲同学说:“二环路车流量为每小时10000辆”.
乙同学说:“四环路比三环路车流量每小时多2000辆”.
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.
请根据他们提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
(原创题)小明在汽车上,汽车匀速前进,他看到路旁公里牌上是一个两位数,一小时后,他又看见公里牌上的两位数恰好是前次两位数个、十位数字互换了一下,又过了一个小时,公里牌上是一个三位数,它是第一次看见的两位数中间加了一个零,求汽车的速度.
(原创题)阅读下列材料再解方程:
│x+2│=3,我们可以将x+2视为一个整体,由于绝对值为3的数有两个,所以x+2=3或x+2=-3,解得x=1或-5.
请按照上面解法解方程x-│
x+1│=1.
(经典题)七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五·一”期间的销售情况,下图是调查后小敏与其他两位同学进行交流的情景.根据他们的对话,求A,B两个超市“五·一”期间的销售额(只需列出方程即可).
用方程表示数量关系:
(1)若数的2倍减去1等于这个数加上5.
(2)一种商品按成本价提高40%后标价,再打8折销售,售价为240元,设这件商品的成本价为x元.
(3)甲,乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,设乙的速度为x千米/时.
解下列方程:
(1)4x-7=13;(2)
x-2=4+
x
(3)0.3x+1.2-2x=1.2-27x(4)40×10%·x-5=100×20%+12x
如图,在三角形ABC中,AB=AC=13,AD、BE是高,AD=12。
(1)求BC的长;(3分。)
(2)求DE的长;(2分。)
(3)求BE的长。(2分。)
、图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b的形状拼成一个正方形.
(1) 写出图b中的阴影部分的正方形的边长;
(2) 写出图b中阴影部分的面积:
(3)观察图b写出下列三个代数式
之间的等量关系;
根据(3)题中的等量关系,解决如下问题:若
,求
试题篮
()