优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解答题
初中数学

如图,一次函数 y = k 1 x + b ( k 1 0 ) 与反比例函数 y = k 2 x ( k 2 0 ) 的图象交于点 A ( 1 , 2 ) B ( m , 1 )

(1)求这两个函数的表达式;

(2)在 x 轴上是否存在点 P ( n 0 ) ( n > 0 ) ,使 ΔABP 为等腰三角形?若存在,求 n 的值;若不存在,说明理由.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC B = 40 °

(1)在图中,用尺规作出 ΔABC 的内切圆 O ,并标出 O 与边 AB BC AC 的切点 D E F (保留痕迹,不必写作法);

(2)连接 EF DF ,求 EFD 的度数.

来源:2017年浙江省嘉兴市(舟山市)中考数学试卷
  • 题型:未知
  • 难度:未知

湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 20000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本 = 放养总费用 + 收购成本).

(1)设每天的放养费用是 a 万元,收购成本为 b 万元,求 a b 的值;

(2)设这批淡水鱼放养 t 天后的质量为 m ( kg ) ,销售单价为 y / kg .根据以往经验可知: m t 的函数关系为 m = 20000 ( 0 t 50 ) 100 t + 15000 ( 50 < t 100 ) y t 的函数关系如图所示.

①分别求出当 0 t 50 50 < t 100 时, y t 的函数关系式;

②设将这批淡水鱼放养 t 天后一次性出售所得利润为 W 元,求当 t 为何值时, W 最大?并求出最大值.(利润 = 销售总额 总成本)

来源:2017年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 的对角线 AC BD 相交于点 O

(1)如图1, E G 分别是 OB OC 上的点, CE DG 的延长线相交于点 F .若 DF CE ,求证: OE = OG

(2)如图2, H BC 上的点,过点 H EH BC ,交线段 OB 于点 E ,连接 DH CE 于点 F ,交 OC 于点 G .若 OE = OG

①求证: ODG = OCE

②当 AB = 1 时,求 HC 的长.

来源:2017年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O Rt Δ ABC 的直角边 AC 上一点,以 OC 为半径的 O 与斜边 AB 相切于点 D ,交 OA 于点 E .已知 BC = 3 AC = 3

(1)求 AD 的长;

(2)求图中阴影部分的面积.

来源:2017年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整) :

请根据所给信息,解答下列问题:

(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?

(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)

(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?

来源:2017年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

对于任意实数 a b ,定义关于“ ”的一种运算如下: a b = 2 a b .例如: 5 2 = 2 × 5 2 = 8 ( 3 ) 4 = 2 × ( 3 ) 4 = 10

(1)若 3 x = 2011 ,求 x 的值;

(2)若 x 3 < 5 ,求 x 的取值范围.

来源:2017年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,设二次函数 y 1 = ( x + a ) ( x a 1 ) ,其中 a 0

(1)若函数 y 1 的图象经过点 ( 1 , 2 ) ,求函数 y 1 的表达式;

(2)若一次函数 y 2 = ax + b 的图象与 y 1 的图象经过 x 轴上同一点,探究实数 a b 满足的关系式;

(3)已知点 P ( x 0 m ) Q ( 1 , n ) 在函数 y 1 的图象上,若 m < n ,求 x 0 的取值范围.

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 G 在对角线 BD 上(不与点 B D 重合), GE DC 于点 E GF BC 于点 F ,连接 AG

(1)写出线段 AG GE GF 长度之间的数量关系,并说明理由;

(2)若正方形 ABCD 的边长为1, AGF = 105 ° ,求线段 BG 的长.

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.

(1)设矩形的相邻两边长分别为 x y

①求 y 关于 x 的函数表达式;

②当 y 3 时,求 x 的取值范围;

(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中,点 D E 分别在边 AC AB 上, AG BC 于点 G AF DE 于点 F EAF = GAC

(1)求证: ΔADE ΔABC

(2)若 AD = 3 AB = 5 ,求 AF AG 的值.

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,一次函数 y = kx + b ( k b 都是常数,且 k 0 ) 的图象经过点 ( 1 , 0 ) ( 0 , 2 )

(1)当 2 < x 3 时,求 y 的取值范围;

(2)已知点 P ( m , n ) 在该函数的图象上,且 m n = 4 ,求点 P 的坐标.

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).

某校九年级50名学生跳高测试成绩的频数表

组别 ( m )

频数

1 . 09 ~ 1 . 19

8

1 . 19 ~ 1 . 29

12

1 . 29 ~ 1 . 39

a

1 . 39 ~ 1 . 49

10

(1)求 a 的值,并把频数直方图补充完整;

(2)该年级共有500名学生,估计该年级学生跳高成绩在 1 . 29 m (含 1 . 29 m ) 以上的人数.

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 mx 3 ( m > 0 ) y 轴于点 C CA y 轴,交抛物线于点 A ,点 B 在抛物线上,且在第一象限内, BE y 轴,交 y 轴于点 E ,交 AO 的延长线于点 D BE = 2 AC

(1)用含 m 的代数式表示 BE 的长.

(2)当 m = 3 时,判断点 D 是否落在抛物线上,并说明理由.

(3)若 AG / / y 轴,交 OB 于点 F ,交 BD 于点 G

①若 ΔDOE ΔBGF 的面积相等,求 m 的值.

②连接 AE ,交 OB 于点 M ,若 ΔAMF ΔBGF 的面积相等,则 m 的值是  

来源:2016年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.

甲种糖果

乙种糖果

丙种糖果

单价(元 / 千克)

15

25

30

千克数

40

40

20

(1)求该什锦糖的单价.

(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?

来源:2016年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学解答题